Design and key construction technology of steel-concrete-steel sandwich composite pylon for a large span cable-stayed bridge

This paper introduces a new type of steel-concrete composite pylon that has been applied to Nanjing Fifth Yangtze River Bridge (a three-pylon cable-stayed bridge with a main span of 600 m). For this new type of pylon, the steel shells are connected with concrete through PBL shear connectors and stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-04, Vol.13 (1), p.6626-6626, Article 6626
Hauptverfasser: Pei, Bida, Chong, Aixiu, Xia, Huan, Kang, Xueyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new type of steel-concrete composite pylon that has been applied to Nanjing Fifth Yangtze River Bridge (a three-pylon cable-stayed bridge with a main span of 600 m). For this new type of pylon, the steel shells are connected with concrete through PBL shear connectors and studs, and the inner steel shells are connected with the outer steel shells by angle steels. Numerical analysis and full-scale model tests show that the pylon structure exhibits excellent mechanical properties and construction performance. The application of BIM technology, the research and development of special spreaders and construction platforms ensure the precise installation of structures. Highly factory-manufactured modular assembly of the reinforced steel shell structure can effectively reduce the intensity and difficulty of on-site operations, and improve the quality of the project, with low construction risks. Whereas, the successful application of this steel-concrete-steel sandwich composite pylon marks the formation of a complete set of construction technology of steel-concrete-steel sandwich composite pylon, which can be widely used in similar bridges.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-33316-7