Wavelet Optimal Estimations for Density Functions under Severely Ill-Posed Noises
Motivated by Lounici and Nickl's work (2011), this paper considers the problem of estimation of a density f based on an independent and identically distributed sample Y1,…,Yn from g=f*φ. We show a wavelet optimal estimation for a density (function) over Besov ball Br,qs(L) and Lp risk (1≤p
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.386-392-240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by Lounici and Nickl's work (2011), this paper considers the problem of estimation of a density f based on an independent and identically distributed sample Y1,…,Yn from g=f*φ. We show a wavelet optimal estimation for a density (function) over Besov ball Br,qs(L) and Lp risk (1≤p |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2013/260573 |