Fast Adaptive RNN Encoder⁻Decoder for Anomaly Detection in SMD Assembly Machine
Surface Mounted Device (SMD) assembly machine manufactures various products on a flexible manufacturing line. An anomaly detection model that can adapt to the various manufacturing environments very fast is required. In this paper, we proposed a fast adaptive anomaly detection model based on a Recur...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2018-10, Vol.18 (10), p.3573 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface Mounted Device (SMD) assembly machine manufactures various products on a flexible manufacturing line. An anomaly detection model that can adapt to the various manufacturing environments very fast is required. In this paper, we proposed a fast adaptive anomaly detection model based on a Recurrent Neural Network (RNN) Encoder⁻Decoder with operating machine sounds. RNN Encoder⁻Decoder has a structure very similar to Auto-Encoder (AE), but the former has significantly reduced parameters compared to the latter because of its rolled structure. Thus, the RNN Encoder⁻Decoder only requires a short training process for fast adaptation. The anomaly detection model decides abnormality based on Euclidean distance between generated sequences and observed sequence from machine sounds. Experimental evaluation was conducted on a set of dataset from the SMD assembly machine. Results showed cutting-edge performance with fast adaptation. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18103573 |