Satellite-Observed Time and Length Scales of Global Sea Surface Salinity Variability: A Comparison of Three Satellite Missions

Sea surface salinity (SSS) observations from Aquarius, Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) satellite missions are compared to characterize the time and length scales of SSS variability globally. Overall, there is general agreement between the global patte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-11, Vol.14 (21), p.5435
Hauptverfasser: Yi, Daling Li, Melnichenko, Oleg, Hacker, Peter, Fan, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sea surface salinity (SSS) observations from Aquarius, Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) satellite missions are compared to characterize the time and length scales of SSS variability globally. Overall, there is general agreement between the global patterns of the time and length scales of SSS variability estimated from the three satellite missions. The temporal scales of SSS variability vary from more than 90 days in the tropics to ~15 days in the Southern Ocean. The very short temporal scales (close to the Nyquist period) in some parts of the ocean are probably due to the high level of noise in the satellite data or the high noise-to-signal ratio. The longest temporal scales are observed along the South Pacific Convergence Zone (SPCZ) and in the central and western tropical Pacific. These areas are also related to the strongest ENSO-related signal in SSS. The processes governing the SSS variability and distribution are also non-stationary, such that the scales determined over different observation periods may differ. Dominant spatial scales of SSS variability are generally the longest (up to 150 km) in the tropics and the shortest (
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14215435