A lower bound for the L_2[-1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle
Let C be the unit circle {z: |z| = 1} and Qn(z) bean arbitrary C-polynomial (i. e., all its zeros z1, . . ., zn ∈ C). We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L_2[−1,1] is greater than 1/8.
Gespeichert in:
Veröffentlicht in: | Issues of analysis 2019-06, Vol.26 (2), p.67-72 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let C be the unit circle {z: |z| = 1} and Qn(z) bean arbitrary C-polynomial (i. e., all its zeros z1, . . ., zn ∈ C). We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L_2[−1,1] is greater than 1/8. |
---|---|
ISSN: | 2306-3432 2306-3424 2306-3432 |
DOI: | 10.15393/j3.art.2019.6030 |