Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1α-Independent Manner

Even though skin and oral mucosae are continuously in contact with commensal and opportunistic microorganisms, they generally remain healthy and uninflamed. Host defense peptides (HDPs) make up the body’s first line of defense against many invading pathogens and are involved in the orchestration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of immunology research 2017-01, Vol.2017 (2017), p.1-11
Hauptverfasser: Veerman, Enno C. I., Bolscher, Jan G. M., Nazmi, Kamran, Roffel, Sanne, Boink, Mireille A., Gibbs, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Even though skin and oral mucosae are continuously in contact with commensal and opportunistic microorganisms, they generally remain healthy and uninflamed. Host defense peptides (HDPs) make up the body’s first line of defense against many invading pathogens and are involved in the orchestration of innate immunity and the inflammatory response. In this study, we investigated the effect of two salivary HDPs, LL-37 and Hst1, on the inflammatory and antimicrobial response by skin and oral mucosa (gingiva) keratinocytes and fibroblasts. The potent antimicrobial chemokine CCL20 was investigated and compared with chemokines CCL2, CXCL1, CXCL8, and CCL27 and proinflammatory cytokines IL-1α and IL-6. Keratinocyte-fibroblast cocultures showed a synergistic increase in CCL20 secretion upon Hst1 and LL-37 exposure compared to monocultures. These cocultures also showed increased IL-6, CXCL1, CXCL8, and CCL2 secretion, which was IL-1α dependent. Secretion of the antimicrobial chemokine CCL20 was clearly IL-1α independent. These results indicate that salivary peptides can stimulate skin as well as gingiva cells to secrete antimicrobial chemokines as part of the hosts’ defense to counteract infection.
ISSN:2314-8861
2314-7156
DOI:10.1155/2017/3078194