Generalized Grey Target Decision Method for Mixed Attributes Based on Kullback-Leibler Distance
A novel generalized grey target decision method for mixed attributes based on Kullback-Leibler (K-L) distance is proposed. The proposed approach involves the following steps: first, all indices are converted into index binary connection number vectors; second, the two-tuple (determinacy, uncertainty...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2018-07, Vol.20 (7), p.523 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel generalized grey target decision method for mixed attributes based on Kullback-Leibler (K-L) distance is proposed. The proposed approach involves the following steps: first, all indices are converted into index binary connection number vectors; second, the two-tuple (determinacy, uncertainty) numbers originated from index binary connection number vectors are obtained; third, the positive and negative target centers of two-tuple (determinacy, uncertainty) numbers are calculated; then the K-L distances of all alternatives to their positive and negative target centers are integrated by the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method; the final decision is based on the integrated value on a bigger the better basis. A case study exemplifies the proposed approach. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e20070523 |