Nonlocal diffusion of smooth sets

We consider normal velocity of smooth sets evolving by the s-fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for s [member of] [1/2, 1) while, for s [member of] (0, 1/2), it is nearly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in Engineering 2021, Vol.4 (2), p.1-22
Hauptverfasser: Attiogbe, Anoumou, Fall, Mouhamed Moustapha, Thiam, El Hadji Abdoulaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider normal velocity of smooth sets evolving by the s-fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for s [member of] [1/2, 1) while, for s [member of] (0, 1/2), it is nearly proportional to the fractional mean curvature of the initial set. Our results show that the motion by (fractional) mean curvature flow can be approximated by fractional heat diffusion and by a diffusion by means of harmonic extension of smooth sets. Keywords: motion by fractional mean curvature flow; fractional heat equation; fractional mean curvature; harmonic extension
ISSN:2640-3501
2640-3501
DOI:10.3934/mine.2022009