A review of unusual VLF bursty-patches observed in Northern Finland for Earth, Planets and Space
Using numerical filtering techniques allowing us to reduce noise from sferics, we are able to clearly study a new type of differently structured very low frequency (VLF) radio waves above f = 4 kHz at the ground station of Kannuslehto in northern Finland (KAN, MLAT = 64.4°N, L = 5.5). These emission...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2021-10, Vol.73 (1), p.1-14, Article 191 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using numerical filtering techniques allowing us to reduce noise from sferics, we are able to clearly study a new type of differently structured very low frequency (VLF) radio waves above f = 4 kHz at the ground station of Kannuslehto in northern Finland (KAN, MLAT = 64.4°N, L = 5.5). These emissions are intriguing, since they are detected at frequencies above half the electron gyrofrequency in the equatorial plane (
f
ce
) for the L-shell of Kannuslehto (
f
ce
~ 5–6 kHz). They are commonly observed at Kannuslehto, but have also been infrequently reported at other stations, sometimes under different names. Their possible common origin and manner of propagation is still under investigation. This paper unifies the nomenclature by regrouping all these waves detected at frequencies higher than the local equatorial 0.5
f
ce
at the L-shell of observation under the name of VLF bursty-patches. While these waves have different spectral features, they appeared mostly composed of hiss bursts with durations of a few seconds to several minutes. They also show periodic features with varying periodicity and shape. They are sometimes characterized by single bursts covering very large frequency ranges of several kHz. We also give a review of the different characteristics of VLF bursty-patches observed at Kannuslehto, which at the moment, is the station with the highest observation rate. We present recent observations between 2019 and 2021. |
---|---|
ISSN: | 1880-5981 1343-8832 1880-5981 |
DOI: | 10.1186/s40623-021-01516-y |