Petrophysical Analysis of Low-Contrast Oil Reservoirs with Low Porosity and Low Formation-Water Salinity in SaPu Intercalation of Longxi Area, Daqing Oilfield, China

Low-contrast oil reservoirs have a complicated origin story that frequently results from the interaction of several different factors. The low-contrast oil reservoirs in the Daqing Oilfield’s SaPu intercalation in the Longxi Region are the main subjects of this study. This work investigates the petr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-04, Vol.14 (8), p.3210
Hauptverfasser: Fu, Jianwei, Wang, Guiwen, Xiao, Zhipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-contrast oil reservoirs have a complicated origin story that frequently results from the interaction of several different factors. The low-contrast oil reservoirs in the Daqing Oilfield’s SaPu intercalation in the Longxi Region are the main subjects of this study. This work investigates the petrophysical origins of these low-resistivity oil reservoirs through a series of carefully planned petrophysical experiments. The results showed that the main determinants of the low-contrast oil reservoirs in the SaPu intercalation were the conductivity of clay minerals and a high irreducible water saturation. A low clay conductivity had a significant effect, resulting in a significant reduction in the formation resistivity, even in circumstances with a low porosity and a low formation-water salinity. Moreover, the results from the NMR tests revealed that the irreducible water saturation in the core samples primarily ranged from 0.6 to 0.8, suggesting a significant prevalence. This work provides strong petrophysical indices for evaluating low-resistivity oil reservoirs in the SaPu intercalation and useful information for the petrophysical evaluation of similar reservoirs.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14083210