Fatigue Life Prediction Methodology of Hot Work Tool Steel Dies for High-Pressure Die Casting Based on Thermal Stress Analysis
High-pressure die casting (HPDC) can produce precise geometries in a highly productive manner. In this paper, the failure location and cycles were identified by analyzing the fatigue behavior of the die subjected to repeated thermal stress. An energy-based semi-empirical fatigue life prediction mode...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2022-10, Vol.12 (10), p.1744 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-pressure die casting (HPDC) can produce precise geometries in a highly productive manner. In this paper, the failure location and cycles were identified by analyzing the fatigue behavior of the die subjected to repeated thermal stress. An energy-based semi-empirical fatigue life prediction model was developed to handle the complex stress history. The proposed model utilizing mean stress, amplitudes of stress, and strain was calculated by one-way coupling numerical analysis of computational fluid dynamics (CFD) and finite element analysis (FEA). CFD temperature results of the die differed from the measured results by 2.19%. The maximum stress distribution obtained from FEA was consistent with the actual fracture location, demonstrating the reliability of the analytical model with a 2.27% average deviation between the experimental and simulation results. Furthermore, the model showed an excellent correlation coefficient of R2 = 97.6%, and its accuracy was verified by comparing the calculated fatigue life to the actual die breakage results with an error of 20.6%. As a result, the proposed model is practical and can be adopted to estimate the fatigue life of hot work tool steels for various stress and temperature conditions. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met12101744 |