CRISPR-based biosensor for the detection of Marburg and Ebola virus
Marburg Virus is one of the most neglected diseases that dated back to 1967. Prior to the 21st century, the outbreak of the virus was recorded trice, In 1967, 1998 and 2004. Accurate and early detection of pathogenic viruses such as Marburg, Ebola, Zika, Human Immunodeficiency Virus (HIV), Dengue, S...
Gespeichert in:
Veröffentlicht in: | Sensing and Bio-Sensing Research 2024-02, Vol.43, p.100601, Article 100601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marburg Virus is one of the most neglected diseases that dated back to 1967. Prior to the 21st century, the outbreak of the virus was recorded trice, In 1967, 1998 and 2004. Accurate and early detection of pathogenic viruses such as Marburg, Ebola, Zika, Human Immunodeficiency Virus (HIV), Dengue, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) etc. is crucial for treatment and prevention. In the Last 2 decades, scientists relied on molecular diagnostic assays which include antigen-antibody and nucleic acid-based testing approaches for the detection of pathogenic viruses, bacteria, fungi and pathogenic surveillances. Despite the widely used of these assays, they are hindered by several factors which includes high cost, the use of expensive tools, long turnaround time, the use of chemicals and the need for trained personnel. In order to counter some of these challenges, scientists developed Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based biosensor characterized by high specificity. Integration of CRISPR-based biosensor with nanomaterials have shown to increase the performance of the biosensors. Thus, this review provides extensive knowledge on the pathogenicity of Zika and Marburg viruses, conventional diagnosis and the prospect of CRISPR-Cas toolbox in conducting accurate diagnosis of these viruses. The review cover 6 sections which include introduction as section 1, overview of the pathogenicity of Ebola and Marburg viruses in terms of pathology, transmission, number of cases are discussed in section 2, conventional approaches are covered in section 3, CRISPR/Cas systems in both prokaryotic and eukaryotic are overviewed in section 4, the link between CRISPR/Cas system and detection of Ebola and Marburg viruses are presented in section 5, open research and issues are highlighted in section 6 while section 7 covers the concluding remarks.
•Marburg and Ebola virus continue to be of great concern and burden to several African countries.•Detection of Marburg and Ebola virus using antigen-based and PCR can lead to false results.•The application of CRISPR/Cas system has the potential to increase sensitivity. |
---|---|
ISSN: | 2214-1804 2214-1804 |
DOI: | 10.1016/j.sbsr.2023.100601 |