Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data

This study focuses on driver-behavior identification and its application to finding embedded solutions in a connected car environment. We present a lightweight, end-to-end deep-learning framework for performing driver-behavior identification using in-vehicle controller area network (CAN-BUS) sensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5030
Hauptverfasser: Ullah, Shan, Kim, Deok-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on driver-behavior identification and its application to finding embedded solutions in a connected car environment. We present a lightweight, end-to-end deep-learning framework for performing driver-behavior identification using in-vehicle controller area network (CAN-BUS) sensor data. The proposed method outperforms the state-of-the-art driver-behavior profiling models. Particularly, it exhibits significantly reduced computations (i.e., reduced numbers both of floating-point operations and parameters), more efficient memory usage (compact model size), and less inference time. The proposed architecture features depth-wise convolution, along with augmented recurrent neural networks (long short-term memory or gated recurrent unit), for time-series classification. The minimum time-step length (window size) required in the proposed method is significantly lower than that required by recent algorithms. We compared our results with compressed versions of existing models by applying efficient channel pruning on several layers of current models. Furthermore, our network can adapt to new classes using sparse-learning techniques, that is, by freezing relatively strong nodes at the fully connected layer for the existing classes and improving the weaker nodes by retraining them using data regarding the new classes. We successfully deploy the proposed method in a container environment using NVIDIA Docker in an embedded system (Xavier, TX2, and Nano) and comprehensively evaluate it with regard to numerous performance metrics.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185030