Electric-magnetic duality in twisted quantum double model of topological orders
A bstract We derive a partial electric-magnetic (PEM) duality transformation of the twisted quantum double (TQD) model TQD( G, α ) — discrete Dijkgraaf-Witten model — with a finite gauge group G , which has an Abelian normal subgroup N , and a three-cocycle α ∈ H 3 ( G, U(1)). Any equivalence betwee...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2020-11, Vol.2020 (11), p.1-39, Article 170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We derive a partial electric-magnetic (PEM) duality transformation of the twisted quantum double (TQD) model TQD(
G, α
) — discrete Dijkgraaf-Witten model — with a finite gauge group
G
, which has an Abelian normal subgroup
N
, and a three-cocycle
α
∈
H
3
(
G,
U(1)). Any equivalence between two TQD models, say, TQD(
G, α
) and TQD(
G′, α′
), can be realized as a PEM duality transformation, which exchanges the
N
-charges and
N
-fluxes only. Via the PEM duality, we construct an explicit isomorphism between the corresponding TQD algebras
D
α
(
G
) and
D
α′
(
G′
) and derive the map between the anyons of one model and those of the other. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP11(2020)170 |