Electric-magnetic duality in twisted quantum double model of topological orders

A bstract We derive a partial electric-magnetic (PEM) duality transformation of the twisted quantum double (TQD) model TQD( G, α ) — discrete Dijkgraaf-Witten model — with a finite gauge group G , which has an Abelian normal subgroup N , and a three-cocycle α ∈ H 3 ( G, U(1)). Any equivalence betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-11, Vol.2020 (11), p.1-39, Article 170
Hauptverfasser: Hu, Yuting, Wan, Yidun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We derive a partial electric-magnetic (PEM) duality transformation of the twisted quantum double (TQD) model TQD( G, α ) — discrete Dijkgraaf-Witten model — with a finite gauge group G , which has an Abelian normal subgroup N , and a three-cocycle α ∈ H 3 ( G, U(1)). Any equivalence between two TQD models, say, TQD( G, α ) and TQD( G′, α′ ), can be realized as a PEM duality transformation, which exchanges the N -charges and N -fluxes only. Via the PEM duality, we construct an explicit isomorphism between the corresponding TQD algebras D α ( G ) and D α′ ( G′ ) and derive the map between the anyons of one model and those of the other.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2020)170