Red Phosphorus Potassium‐Ion Battery Anodes
Phosphorus (P) possesses the highest theoretical specific capacity (865 mA h g−1) among all the elements for potassium‐ion battery (PIB) anodes. Although Red P (RP) has intrinsic advantages over its allotropes, including low cost and nontoxicity, and simpler preparation, it is yet unknown to effecti...
Gespeichert in:
Veröffentlicht in: | Advanced science 2019-05, Vol.6 (9), p.1801354-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) possesses the highest theoretical specific capacity (865 mA h g−1) among all the elements for potassium‐ion battery (PIB) anodes. Although Red P (RP) has intrinsic advantages over its allotropes, including low cost and nontoxicity, and simpler preparation, it is yet unknown to effectively activate it into a high‐performance PIB anode. Here, high‐performance RP PIB anodes are reported. Two important factors are found to facilitate RP react with K‐ions reversibly: i) nanoscale RP particles are dispersed evenly in a conductive carbon matrix composed of multiwall carbon nanotubes and Ketjen black that provide an efficient electrical pathway and a tough scaffold. ii) The results of X‐ray photoelectron spectroscopy spectrum and the electrochemical performance perhaps show that no PC bond formation is beneficial to allow K‐ions to react with RP effectively. As a result, the RP/C electrodes deliver a reversible specific capacity of ≈750 mA h g−1 and exhibit a high‐rate capability (≈300 mA h g−1 at 1000 mA g−1). RP/C full cells using potassium manganese hexacyanoferrate as cathode show a long cycling life (680 cycles) at a current density of 1000 mA g−1, in addition, a pouch‐type battery is built to demonstrate practical applications.
Red phosphorus (RP) is activated for potassium‐ion battery anodes via a facile wet‐ball milling process. Supported by the conductive network composed of multiwall carbon nanotubes and Ketjen black, full cells comprising an RP/C anode and a potassium manganese hexacyanoferrate cathode show a high specific energy density (193 Wh kg−1) that is a high value for K‐ion full cells. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.201801354 |