Gutman index, edge-Wiener index and edge-connectivity
We study the Gutman index ${\rm Gut}(G)$ and the edge-Wiener index $W_e (G)$ of connected graphs $G$ of given order $n$ and edge-connectivity $\lambda$. We show that the bound ${\rm Gut}(G) \le \frac{2^4 \cdot 3}{5^5 (\lambda+1)} n^5 + O(n^4)$ is asymptotically tight for $\lambda \ge 8$. We i...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2020-12, Vol.9 (4), p.231-242 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Gutman index ${\rm Gut}(G)$ and the edge-Wiener index $W_e (G)$ of connected graphs $G$ of given order $n$ and edge-connectivity $\lambda$. We show that the bound ${\rm Gut}(G) \le \frac{2^4 \cdot 3}{5^5 (\lambda+1)} n^5 + O(n^4)$ is asymptotically tight for $\lambda \ge 8$. We improve this result considerably for $\lambda \le 7$ by presenting asymptotically tight upper bounds on ${\rm Gut}(G)$ and $W_e (G)$ for $2 \le \lambda \le 7$. |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2020.124104.1749 |