Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation

Nano-ordered intermetallic compounds have generated great interest in fuel cell applications. However, the synthesis of non-preciousearly transition metal intermetallic nanoparticles remains a formidable challenge owing to the extremely oxyphilic nature and very negative reduction potentials. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-10, Vol.10 (1), p.4514-9, Article 4514
Hauptverfasser: Feng, Guang, An, Li, Li, Biao, Zuo, Yuxuan, Song, Jin, Ning, Fanghua, Jiang, Ning, Cheng, Xiaopeng, Zhang, Yuefei, Xia, Dingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nano-ordered intermetallic compounds have generated great interest in fuel cell applications. However, the synthesis of non-preciousearly transition metal intermetallic nanoparticles remains a formidable challenge owing to the extremely oxyphilic nature and very negative reduction potentials. Here, we have successfully synthesized non-precious Co 3 Ta intermetallic nanoparticles, with uniform size of 5 nm. Atomic structural characterizations and X-ray absorption fine structure measurements confirm the atomically ordered intermetallic structure. As electrocatalysts for the hydrazine oxidation reaction, Co 3 Ta nanoparticles exhibit an onset potential of −0.086 V (vs. reversible hydrogen electrode) and two times higher specific activity relative to commercial Pt/C (+0.06 V), demonstrating the top-level performance among reported electrocatalysts. The Co-Ta bridge sites are identified as the location of the most active sites thanks to density functional theory calculations. The activation energy of the hydrogen dissociation step decreases significantly upon N 2 H 4 adsorption on the Co-Ta bridge active sites, contributing to the significantly enhanced activity. Intermetallic nanoparticles comprised of early transition metals are attractive for fuel cell applications, but are generally limited to noble metal-based systems. Here, authors report non-precious early transition metal intermetallic nanoparticles with promising electrocatalytic performance for the hydrazine oxidation reaction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12509-7