Materials informatics approach to understand aluminum alloys

The relations between the mechanical properties, heat treatment, and compositions of elements in aluminum alloys are extracted by a materials informatics technique. In our strategy, a machine learning model is first trained by a prepared database to predict the properties of materials. The dependenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and technology of advanced materials 2020-01, Vol.21 (1), p.540-551
Hauptverfasser: Tamura, Ryo, Watanabe, Makoto, Mamiya, Hiroaki, Washio, Kota, Yano, Masao, Danno, Katsunori, Kato, Akira, Shoji, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relations between the mechanical properties, heat treatment, and compositions of elements in aluminum alloys are extracted by a materials informatics technique. In our strategy, a machine learning model is first trained by a prepared database to predict the properties of materials. The dependence of the predicted properties on explanatory variables, that is, the type of heat treatment and element composition, is searched using a Markov chain Monte Carlo method. From the dependencies, a factor to obtain the desired properties is investigated. Using targets of 5000, 6000, and 7000 series aluminum alloys, we extracted relations that are difficult to find via simple correlation analysis. Our method is also used to design an experimental plan to optimize the materials properties while promoting the understanding of target materials.
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2020.1791676