An Extended Virtual Aperture Imaging Model for Through-the-wall Sensing and Its Environmental Parameters Estimation

Through-the-wall imaging (TWI) radar has been given increasing attention in recent years. However, prior knowledge about environmental parameters, such as wall thickness and dielectric constant, and the standoff distance between an array and a wall, is generally unavailable in real applications. Thu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radioengineering 2014-09, Vol.23 (3), p.842-851
Hauptverfasser: Yongping Song, Tian Jin, Biying Lu, Jun Hu, Zhimin Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through-the-wall imaging (TWI) radar has been given increasing attention in recent years. However, prior knowledge about environmental parameters, such as wall thickness and dielectric constant, and the standoff distance between an array and a wall, is generally unavailable in real applications. Thus, targets behind the wall suffer from defocusing and displacement under the conventional imag¬ing operations. To solve this problem, in this paper, we first set up an extended imaging model of a virtual aperture obtained by a multiple-input-multiple-output array, which considers the array position to the wall and thus is more applicable for real situations. Then, we present a method to estimate the environmental parameters to calibrate the TWI, without multiple measurements or dominant scatter¬ers behind-the-wall to assist. Simulation and field experi¬ments were performed to illustrate the validity of the pro¬posed imaging model and the environmental parameters estimation method.
ISSN:1210-2512