Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting

In this paper, we report the use of a superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-02, Vol.14 (4), p.1478
Hauptverfasser: D’Elia, Alessandro, Alfakes, Boulos, Alkhazaleh, Anas, Banchi, Leonardo, Beretta, Matteo, Carrazza, Stefano, Chiarello, Fabio, Di Gioacchino, Daniele, Giachero, Andrea, Henrich, Felix, Piedjou Komnang, Alex Stephane, Ligi, Carlo, Maccarrone, Giovanni, Macucci, Massimo, Palumbo, Emanuele, Pasquale, Andrea, Piersanti, Luca, Ravaux, Florent, Rettaroli, Alessio, Robbiati, Matteo, Tocci, Simone, Gatti, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report the use of a superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, such as the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on a single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript, we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favoring applications like axion dark matter searches.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14041478