The Limb Kinetics of Goat Walking on the Slope with Different Angles
The study aimed to assess the gait adjustment techniques of limbs on different slopes and investigate the relationship between forelimb and hindlimb kinetics and the center of mass (COM) during the uphill movement of a specific Boer goat using a pressure-sensitive walkway (PSW). During the uphill an...
Gespeichert in:
Veröffentlicht in: | Biomimetics (Basel, Switzerland) Switzerland), 2022-11, Vol.7 (4), p.220 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study aimed to assess the gait adjustment techniques of limbs on different slopes and investigate the relationship between forelimb and hindlimb kinetics and the center of mass (COM) during the uphill movement of a specific Boer goat using a pressure-sensitive walkway (PSW). During the uphill and downhill movements at a comfortable walking speed, we measured the ground reaction force (GRF) of the forelimbs and hindlimbs on the slope, the change in the included angle of the propulsive force direction of the forelimbs and hindlimbs, and the impulse relationship between GRF and propulsive force. According to the study, since the forelimbs of the goat were nearer the COM, they were primarily adjusted during the movement on the slope. By lowering the initial included angle of the propulsive force and the angle variation range, the forelimbs and hindlimbs could walk steadily. The forelimbs and hindlimbs exhibited completely different adjustment strategies during uphill and downhill movements. In particular, the forelimbs performed braking and the hindlimbs performed driving. In addition, we discovered that the goat altered its adjustment strategy when climbing the steep slope. All findings of this study indicate the need to understand the gait adjustment mode of the Boer goat during movement on the slope to thoroughly comprehend the driving strategy of quadrupeds with the ability to walk on specialized terrains. |
---|---|
ISSN: | 2313-7673 2313-7673 |
DOI: | 10.3390/biomimetics7040220 |