Parylene C as a versatile dielectric material for organic field-effect transistors
An emerging new technology, organic electronics, is approaching the stage of large-scale industrial application. This is due to a remarkable progress in synthesis of a variety of organic semiconductors, allowing one to design and to fabricate, so far on a laboratory scale, different organic electron...
Gespeichert in:
Veröffentlicht in: | Beilstein journal of nanotechnology 2017-07, Vol.8 (1), p.1532-1545 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An emerging new technology, organic electronics, is approaching the stage of large-scale industrial application. This is due to a remarkable progress in synthesis of a variety of organic semiconductors, allowing one to design and to fabricate, so far on a laboratory scale, different organic electronic devices of satisfactory performance. However, a complete technology requires upgrading of fabrication procedures of all elements of electronic devices and circuits, which not only comprise active layers, but also electrodes, dielectrics, insulators, substrates and protecting/encapsulating coatings. In this review, poly(chloro-
-xylylene) known as Parylene C, which appears to become a versatile supporting material especially suitable for applications in flexible organic electronics, is presented. A synthesis and basic properties of Parylene C are described, followed by several examples of use of parylenes as substrates, dielectrics, insulators, or protecting materials in the construction of organic field-effect transistors. |
---|---|
ISSN: | 2190-4286 2190-4286 |
DOI: | 10.3762/bjnano.8.155 |