Subgroup-Independent Mapping of Renal Cell Carcinoma-Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries

Renal cell carcinoma (RCC) is divided into three major histopathologic groups-clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology 2021-03, Vol.11, p.621278-621278
Hauptverfasser: Marquardt, André, Solimando, Antonio Giovanni, Kerscher, Alexander, Bittrich, Max, Kalogirou, Charis, Kübler, Hubert, Rosenwald, Andreas, Bargou, Ralf, Kollmannsberger, Philip, Schilling, Bastian, Meierjohann, Svenja, Krebs, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renal cell carcinoma (RCC) is divided into three major histopathologic groups-clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin ( )-demonstrating divergence between histopathology and transcriptomic data. Further analyses of via machine learning revealed a predominant mitochondrial gene signature-a trait previously known for chRCC-across all histopathologic subgroups. Additionally, ccRCC samples from presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, affiliation was associated with a highly significant shorter overall survival for patients with ccRCC-and a highly significant longer overall survival for chRCC patients. Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2021.621278