Comment on "Soft α-Open Sets and Soft α-Continuous Functions
Akdag and Ozkan pointed out in [1, Example 14] that the collection τ of soft sets is a soft topology over the universe X={x1,x2,x3,x4}, where E={e1,e2,e3} is the set of parameters. This conclusion is not correct since (F1,E) ∩~ (F2,E)∉τ, (F1,E) ∪~ (F2,E)∉τ, (F1,E) ∩~ (F11,E)∉τ, (F1,E) ∩~ (F14,E)∉τ,...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2015, Vol.2015 (2015), p.93-93 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Akdag and Ozkan pointed out in [1, Example 14] that the collection τ of soft sets is a soft topology over the universe X={x1,x2,x3,x4}, where E={e1,e2,e3} is the set of parameters. This conclusion is not correct since (F1,E) ∩~ (F2,E)∉τ, (F1,E) ∪~ (F2,E)∉τ, (F1,E) ∩~ (F11,E)∉τ, (F1,E) ∩~ (F14,E)∉τ, (F1,E) ∪~ (F14,E)∉τ, (F2,E) ∪~ (F5,E)∉τ, (F2,E) ∪~ (F6,E)∉τ, (F2,E) ∩~ (F7,E)∉τ, (F2,E) ∪~ (F7,E)∉τ, (F6,E) ∩~ (F14,E)∉τ, (F6,E) ∪~ (F14,E)∉τ, (F14,E) ∩~ (F15,E)∉τ, (F14,E) ∪~ (F15,E)∉τ, and many of the soft sets belong to the family τ and their soft intersection and soft union do not exist in τ. Consequently, [1, Examples 25, 30, 31, 32] also are incorrect. Also, the authors used the same Example 14 in [2, Example 1], so [2, Examples 2, 6, 7, 8] also are incorrect. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2015/913034 |