Nanoengineering facilitating the target mission: targeted extracellular vesicles delivery systems design
Precision medicine has put forward the proposition of "precision targeting" for modern drug delivery systems. Inspired by techniques from biology, pharmaceutical sciences, and nanoengineering, numerous targeted drug delivery systems have been developed in recent decades. But the large-scal...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2022-09, Vol.20 (1), p.1-431, Article 431 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precision medicine has put forward the proposition of "precision targeting" for modern drug delivery systems. Inspired by techniques from biology, pharmaceutical sciences, and nanoengineering, numerous targeted drug delivery systems have been developed in recent decades. But the large-scale applications of these systems are limited due to unsatisfactory targeting efficiency, cytotoxicity, easy removability, and instability. As such, the natural endogenous cargo delivery vehicle--extracellular vesicles (EVs)--have sparked significant interest for its unique inherent targeting properties, biocompatibility, transmembrane ability, and circulatory stability. The membranes of EVs are enriched for receptors or ligands that interact with target cells, which endows them with inherent targeting mission. However, most of the natural therapeutic EVs face the fate of being cleared by macrophages, resulting in off-target. Therefore, the specificity of natural EVs delivery systems urgently needs to be further improved. In this review, we comprehensively summarize the inherent homing mechanisms of EVs and the effects of the donor cell source and administration route on targeting specificity. We then go over nanoengineering techniques that modify EVs for improving specific targeting, such as source cell alteration and modification of EVs surface. We also highlight the auxiliary strategies to enhance specificity by changing the external environment, such as magnetic and photothermal. Furthermore, contemporary issues such as the lack of a gold standard for assessing targeting efficiency are discussed. This review will provide new insights into the development of precision medicine delivery systems. |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-022-01638-9 |