Mode I Fracture Toughness Test and Fractal Character of Fracture Trajectory of Red Sandstone under Real-Time High Temperature

To evaluate the stability and compactness of high-temperature underground construction, it is necessary to test the fracture toughness of surrounding rock (red sandstone) under real-time high temperature. In this paper, SCB specimens recommended by the International Society for Rock Mechanics are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2019, Vol.2019 (2019), p.1-13
Hauptverfasser: Zejin, Yang, Zhang, Changsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the stability and compactness of high-temperature underground construction, it is necessary to test the fracture toughness of surrounding rock (red sandstone) under real-time high temperature. In this paper, SCB specimens recommended by the International Society for Rock Mechanics are used to measure the mode I fracture toughness of red sandstone at real-time high temperatures. Also, to reveal its fracture characteristics and fracture mechanism, the fracture morphology observation (SEM experiment), XRD experiment, mercury intrusion porosimetry testing, and fractal measurement of fracture trajectory are carried out on the red sandstone specimens at various temperatures. The results show that (1) temperature may have a significant impact on the fracture toughness and fracture characteristics of red sandstone. On the whole, the fracture toughness values decrease with the increase in temperature, while the fractal dimensions of fractal trajectories increase with the increase in temperature. (2) Temperature has a significant influence on the fracture mode of red sandstone. At relatively low temperatures (20°C–400°C), the main fracture mode is transgranular failure. At relatively high temperatures (400°C–700°C), the fracture mode is mainly intergranular failure. (3) The weakening mechanism of red sandstone is mainly due to the effect of thermal dehydration when the temperature is between 100°C and 400°C. When the temperature is between 400°C and 700°C, the weakening mechanism is mainly due to thermal cracking and the α-β phase transition of quartz.
ISSN:1687-8434
1687-8442
DOI:10.1155/2019/5083947