Silver Cluster‐Porphyrin‐Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria

Superbugs are bacteria that have grown resistant to most antibiotics, seriously threating the health of people. Silver (Ag) nanoparticles are known to exert a wide‐spectrum antimicrobial property, yet remains challenging against superbugs. Here, Ag clusters are assembled using porphyrin‐based linker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2022-01, Vol.9 (2), p.e2103721-n/a
Hauptverfasser: Cao, Man, Wang, Shan, Hu, Jia‐Hua, Lu, Bing‐Huai, Wang, Qian‐You, Zang, Shuang‐Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superbugs are bacteria that have grown resistant to most antibiotics, seriously threating the health of people. Silver (Ag) nanoparticles are known to exert a wide‐spectrum antimicrobial property, yet remains challenging against superbugs. Here, Ag clusters are assembled using porphyrin‐based linkers and a novel framework structure (Ag9‐AgTPyP) is produced, in which nine‐nuclearity Ag9 clusters are uniformly separated by Ag‐centered porphyrin units (AgTPyP) in two dimensions, demonstrating open permeant porosity. Ag9‐AgTPyP eliminates over 99.99999% and 99.999% methicillin‐resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) within 2 h upon visible‐light irradiation, which are superior to a majority of bacteria inactivation photocatalysts. The novel‐established long‐term charge‐transfer states from AgTPyP to adjacent Ag9 cluster that has preferential affinity to O2 greatly promote reactive oxygen species (ROS) production efficiency; and its unique framework accelerates the ROS transportation. Personal protective equipment (masks and protective suits) incorporating Ag9‐AgTPyP film also shows excellent performances against superbugs. This superbugs‐killing efficiency is unprecedented among silver complexes and porphyrin derivatives. Utilizing efficient photogenerated electrons and holes between metal cluster and linkers can open up new interests of research in photocatalytic areas. Silver cluster‐porphyrin assembled materials (Ag9‐AgTPyP) are demonstrated as advanced bioprotective materials for combating superbacteria, in which the photogenerated charge efficiently transfers from AgTPyP to adjacent Ag9 cluster that has preferential affinity to O2 and greatly promoting reactive oxygen species production.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202103721