The Preparation and Properties of Amino-Carboxymethyl Chitosan-Based Antibacterial Hydrogel Loaded with ε-Polylysine

In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2023-10, Vol.12 (20), p.3807
Hauptverfasser: Li, Yixi, Qiu, Yulong, Hou, Hongman, Zhang, Gongliang, Hao, Hongshun, Bi, Jingran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long-time release of ε-polylysine (ε-PL), the ACC/DAS hydrogels were synthesized through the Schiff base reaction between the amino group on ACC and the aldehyde group in DAS. The molecular structure, microcosmic properties, loading capacity, and bacteriostatic properties of the four types of hydrogels containing different mass concentrations of ACC were investigated. The results showed that the dynamic imine bond C=N existed in the ACC/DAS hydrogels, which proved that the hydrogels were formed by the cross-linking of the Schiff base reaction. With the increasing mass concentration of the ACC, the cross-sectional morphology of the hydrogel became smoother, the thermal stability increased, and the swelling behavior was gradually enhanced. The tight network structure improved the ε-PL loading efficiency, with the highest value of 99.2%. Moreover, the loading of ε-PL gave the hydrogel good antibacterial properties. These results indicate that ACC/DAS hydrogel is potential in food preservation.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods12203807