A process-based model for the definition of hydrological alert systems in landslide risk mitigation

The definition of hydrological alert systems for rainfall-induced landslides is strongly related to a deep knowledge of the geological and geomorphological features of the territory. Climatic conditions, spatial and temporal evolution of the phenomena and characterization of landslide triggering, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards and earth system sciences 2012-01, Vol.12 (11), p.3343-3357
Hauptverfasser: Floris, M, D'Alpaos, A, De Agostini, A, Stevan, G, Tessari, G, Genevois, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The definition of hydrological alert systems for rainfall-induced landslides is strongly related to a deep knowledge of the geological and geomorphological features of the territory. Climatic conditions, spatial and temporal evolution of the phenomena and characterization of landslide triggering, together with propagation mechanisms, are the key elements to be considered. Critical steps for the development of the systems consist of the identification of the hydrological variable related to landslide triggering and of the minimum rainfall threshold for landslide occurrence. In this paper we report the results from a process-based model to define a hydrological alert system for the Val di Maso Landslide, located in the northeastern Italian Alps and included in the Vicenza Province (Veneto region, NE Italy). The instability occurred in November 2010, due to an exceptional rainfall event that hit the Vicenza Province and the entire NE Italy. Up to 500 mm in 3-day cumulated rainfall generated large flood conditions and triggered hundreds of landslides. During the flood, the Soil Protection Division of the Vicenza Province received more than 500 warnings of instability phenomena. The complexity of the event and the high level of risk to infrastructure and private buildings are the main reasons for deepening the specific phenomenon occurred at Val di Maso. Empirical and physically-based models have been used to identify the minimum rainfall threshold for the occurrence of instability phenomena in the crown area of Val di Maso landslide, where a retrogressive evolution by multiple rotational slides is expected. Empirical models helped in the identification and in the evaluation of recurrence of critical rainfall events, while physically-based modelling was essential to verify the effects on the slope stability of determined rainfall depths. Empirical relationships between rainfall and landslide consist of the calculation of rainfall Depth-Duration-Frequency (DDF) curves, which allow one to determine rainfall depth (or intensity) as a function of duration for given return periods or probabilities of exceedance (frequencies). Physically-based modelling was performed through coupled seepage and slope stability analyses. Combining results from empirical and physically-based modelling, the minimum alert threshold for a reactivation of the phenomenon was found in rainfall cumulated up to 60 days with a return period of 2 yr. These results were used to set up a hydrologi
ISSN:1684-9981
1561-8633
1684-9981
DOI:10.5194/nhess-12-3343-2012