Automated screening for retinopathy

Retinal pathology is a common cause of an irreversible decrease of central vision commonly found amongst senior population. Detection of the earliest signs of retinal diseases can be facilitated by viewing retinal images available from the telemedicine networks. To facilitate the process of retinal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oftalmologii͡a 2014-07, Vol.10 (1), p.4-7
Hauptverfasser: A. S. Rodin, V. S. Akopyan, N. S. Semenova, A. S. Krylov
Format: Artikel
Sprache:rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retinal pathology is a common cause of an irreversible decrease of central vision commonly found amongst senior population. Detection of the earliest signs of retinal diseases can be facilitated by viewing retinal images available from the telemedicine networks. To facilitate the process of retinal images, screening software applications based on image recognition technology are currently on the various stages of development.Purpose: To develop and implement computerized image recognition software that can be used as a decision support technologyfor retinal image screening for various types of retinopathies.Methods: The software application for the retina image recognition has been developed using C++ language. It was tested on dataset of 70 images with various types of pathological features (age related macular degeneration, chorioretinitis, central serous chorioretinopathy and diabetic retinopathy).Results: It was shown that the system can achieve a sensitivity of 73 % and specificity of 72 %.Conclusion: Automated detection of macular lesions using proposed software can significantly reduce manual grading workflow. In addition, automated detection of retinal lesions can be implemented as a clinical decision support system for telemedicine screening. It is anticipated that further development of this technology can become a part of diagnostic image analysis system for the electronic health records.
ISSN:1816-5095
2500-0845
DOI:10.18008/1816-5095-2013-1-4-7