Primary cilia and SHH signaling impairments in human and mouse models of Parkinson’s disease

Parkinson’s disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from spora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-08, Vol.13 (1), p.4819-25, Article 4819
Hauptverfasser: Schmidt, Sebastian, Luecken, Malte D., Trümbach, Dietrich, Hembach, Sina, Niedermeier, Kristina M., Wenck, Nicole, Pflügler, Klaus, Stautner, Constantin, Böttcher, Anika, Lickert, Heiko, Ramirez-Suastegui, Ciro, Ahmad, Ruhel, Ziller, Michael J., Fitzgerald, Julia C., Ruf, Viktoria, van de Berg, Wilma D. J., Jonker, Allert J., Gasser, Thomas, Winner, Beate, Winkler, Jürgen, Vogt Weisenhorn, Daniela M., Giesert, Florian, Theis, Fabian J., Wurst, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson’s disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1 -deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD. Here, the authors reveal using single-cell RNA sequencing that Parkinson’s disease (PD) patient-derived neuronal cells show altered primary cilia morphology and signaling suggesting cilia dysfunction may underlie PD pathogenesis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32229-9