SAINT (Small Aperture Imaging Network Telescope)—A Wide-Field Telescope Complex for Detecting and Studying Optical Transients at Times from Milliseconds to Years
In this paper, we present a project of a multi-channel wide-field optical sky monitoring system with high temporal resolution—Small Aperture Imaging Network Telescope (SAINT)— mostly built from off-the-shelf components and aimed towards searching and studying optical transient phenomena on the short...
Gespeichert in:
Veröffentlicht in: | Photonics 2023-12, Vol.10 (12), p.1352 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a project of a multi-channel wide-field optical sky monitoring system with high temporal resolution—Small Aperture Imaging Network Telescope (SAINT)— mostly built from off-the-shelf components and aimed towards searching and studying optical transient phenomena on the shortest time scales. The instrument consists of twelve channels each containing 30 cm (F/1.5) GENON Max objectives mounted on separate ASA DDM100 mounts with pointing speeds up to 50 deg/s. Each channel is equipped with a 4128 × 4104 pixel Andor Balor sCMOS detector and a set of photometric griz filters and linear polarizers. At the heart of every channel is a custom-built reducer-collimator module allowing rapid switching of an effective focal length of the telescope—due to it the system is capable of operating in either wide-field survey or narrow-field follow-up modes. In the first case, the field of view of the instrument is 470 square degrees (39 sq.deg. for a single channel) and the detection limits (5σ level at 5500 Å) are 12.5, 16.5, 19, 21 with exposure times of 20 ms, 1 s, 30 s and 20 min, correspondingly. In the second, follow-up (e.g., upon detection of a transient of interest by either a real-time detection pipeline, or upon receiving an external trigger) regime, all telescopes are oriented towards the single target, and SAINT becomes an equivalent to a monolithic 1-meter telescope, with the field of view reduced to 11′ × 11′, and the exposure times decreased down to 0.6 ms (1684 frames per second). Different channels may then have different filters installed, thus allowing a detailed study—acquiring both color and polarization information—of a target object with the highest possible temporal resolution. The telescopes are located in two pavilions with sliding roofs and are controlled by a cluster of 25 computers that both govern their operation and acquire and store up to 800 terabytes of data every night, also performing its real-time processing using a dedicated fast image subtraction pipeline. Long-term storage of the data will require a petabyte class storage. The operation of SAINT will allow acquiring an unprecedented amount of data on various classes of astrophysical phenomena, from near-Earth to extragalactic ones, while its multi-channel design and the use of commercially available components allows easy expansion of its scale, and thus performance and detection capabilities. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics10121352 |