Generalized Multiscale Entropy Analysis: Application to Quantifying the Complex Volatility of Human Heartbeat Time Series

We introduce a generalization of multiscale entropy (MSE) analysis. The method is termed MSE , where the subscript denotes the moment used to coarse-grain a time series. MSE , described previously, uses the mean value (first moment). Here, we focus on [Formula: see text], which uses the second momen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2015-03, Vol.17 (3), p.1197-1203
Hauptverfasser: Costa, Madalena D, Goldberger, Ary L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a generalization of multiscale entropy (MSE) analysis. The method is termed MSE , where the subscript denotes the moment used to coarse-grain a time series. MSE , described previously, uses the mean value (first moment). Here, we focus on [Formula: see text], which uses the second moment, , the variance. [Formula: see text] quantifies the dynamics of the volatility (variance) of a signal over multiple time scales. We use the method to analyze the structure of heartbeat time series. We find that the dynamics of the volatility of heartbeat time series obtained from healthy young subjects is highly complex. Furthermore, we find that the multiscale complexity of the volatility, not only the multiscale complexity of the mean heart rate, degrades with aging and pathology. The "bursty" behavior of the dynamics may be related to intermittency in energy and information flows, as part of multiscale cycles of activation and recovery. Generalized MSE may also be useful in quantifying the dynamical properties of other physiologic and of non-physiologic time series.
ISSN:1099-4300
1099-4300
DOI:10.3390/e17031197