Sierra: discovery of differential transcript usage from polyA-captured single-cell RNA-seq data

High-throughput single-cell RNA-seq (scRNA-seq) is a powerful tool for studying gene expression in single cells. Most current scRNA-seq bioinformatics tools focus on analysing overall expression levels, largely ignoring alternative mRNA isoform expression. We present a computational pipeline, Sierra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2020-07, Vol.21 (1), p.167-167, Article 167
Hauptverfasser: Patrick, Ralph, Humphreys, David T, Janbandhu, Vaibhao, Oshlack, Alicia, Ho, Joshua W.K, Harvey, Richard P, Lo, Kitty K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-throughput single-cell RNA-seq (scRNA-seq) is a powerful tool for studying gene expression in single cells. Most current scRNA-seq bioinformatics tools focus on analysing overall expression levels, largely ignoring alternative mRNA isoform expression. We present a computational pipeline, Sierra, that readily detects differential transcript usage from data generated by commonly used polyA-captured scRNA-seq technology. We validate Sierra by comparing cardiac scRNA-seq cell types to bulk RNA-seq of matched populations, finding significant overlap in differential transcripts. Sierra detects differential transcript usage across human peripheral blood mononuclear cells and the Tabula Muris, and 3 ′ UTR shortening in cardiac fibroblasts. Sierra is available at https://github.com/VCCRI/Sierra .
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-020-02071-7