Thiophene Stability in Photodynamic Therapy: A Mathematical Model Approach

Thiophene-containing photosensitizers are gaining recognition for their role in photodynamic therapy (PDT). However, the inherent reactivity of the thiophene moiety toward singlet oxygen threatens the stability and efficiency of these photosensitizers. This study presents a novel mathematical model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-02, Vol.25 (5), p.2528
1. Verfasser: Alcázar, Jackson J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiophene-containing photosensitizers are gaining recognition for their role in photodynamic therapy (PDT). However, the inherent reactivity of the thiophene moiety toward singlet oxygen threatens the stability and efficiency of these photosensitizers. This study presents a novel mathematical model capable of predicting the reactivity of thiophene toward singlet oxygen in PDT, using Conceptual Density Functional Theory (CDFT) and genetic programming. The research combines advanced computational methods, including various DFT techniques and symbolic regression, and is validated with experimental data. The findings underscore the capacity of the model to classify photosensitizers based on their photodynamic efficiency and safety, particularly noting that photosensitizers with a constant rate 1000 times lower than that of unmodified thiophene retain their photodynamic performance without substantial singlet oxygen quenching. Additionally, the research offers insights into the impact of electronic effects on thiophene reactivity. Finally, this study significantly advances thiophene-based photosensitizer design, paving the way for therapeutic agents that achieve a desirable balance between efficiency and safety in PDT.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25052528