Multiple-Output DC-DC Converters with a Reduced Number of Active and Passive Components
Multiple-output converters have been widely used where individual outputs are required. Compared with conventional separate converters, the advantage of multiple outputs is to have a lower number of active and passive components. In this paper, first, a pulse-width-modulation (PWM)-pulse-frequency-m...
Gespeichert in:
Veröffentlicht in: | Journal of low power electronics and applications 2019-09, Vol.9 (3), p.28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple-output converters have been widely used where individual outputs are required. Compared with conventional separate converters, the advantage of multiple outputs is to have a lower number of active and passive components. In this paper, first, a pulse-width-modulation (PWM)-pulse-frequency-modulation (PFM) method is used for two-output converters that have only one coil and one active switch. Secondly, three-output converter topologies are proposed where the third output is controlled by phase delay (PD). These converters need only two coils and two active switches to regulate three outputs. How to obtain PD at different switching frequencies is discussed next, and a PWM-PFM-PD controlled five-output buck converter is presented. The proposed solution uses only two active switches and two magnetic cores to adjust five-output voltages independently. A modeling and digital control method are proposed in order to regulate the five output voltages. A prototype circuit with independent 15 V/1.5 A, 12 V/1.5 A, 5 V/0.8 A, −5 V/0.6 A and 3.3 V/0.45 A outputs is assembled to validate the analysis, and it was proved that it regulates the output voltages at different loads. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea9030028 |