Desmoplakin CSM models unravel mechanisms regulating the binding to intermediate filaments and putative therapeutics for cardiocutaneous diseases

Arrhythmogenic cardiomyopathy (AC) is a common cause of sudden cardiac arrest and death in young adults. It can be induced by different types of mutations throughout the desmoplakin gene including the R2834H mutation in the extreme carboxyterminus tail of desmoplakin (DP CT) which remains structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.23206-24, Article 23206
Hauptverfasser: Badowski, Cedric, Benny, Paula, Verma, Chandra S., Lane, E. Birgitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arrhythmogenic cardiomyopathy (AC) is a common cause of sudden cardiac arrest and death in young adults. It can be induced by different types of mutations throughout the desmoplakin gene including the R2834H mutation in the extreme carboxyterminus tail of desmoplakin (DP CT) which remains structurally uncharacterized and poorly understood. Here, we have created 3D models of DP CT which show the structural effects of AC-inducing mutations as well as the implications of post-translational modifications (PTMs). Our results suggest that, in absence of PTMs, positively charged wildtype DP CT likely folds back onto negatively-charged plectin repeat 14 of nearby plakin repeat domain C (PRD C) contributing to the recruitment of intermediate filaments (IFs). When phosphorylated and methylated, negatively-charged wildtype DP CT would then fold back onto positively-charged plectin repeat 17 of PRD C, promoting the repulsion of intermediate filaments. However, by preventing PTMs, the R2834H mutation would lead to the formation of a cytoplasmic mutant desmoplakin with a constitutively positive DP CT tail that would be aberrantly recruited by cytoplasmic IFs instead of desmosomes, potentially weakening cell-cell contacts and promoting AC. Virtual screening of FDA-approved drug libraries identified several promising drug candidates for the treatment of cardiocutaneous diseases through drug repurposing.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-73705-0