Corrosion of MgO-C with Magnesium Aluminate Spinel Addition in A Steel Casting Simulator
For more than 20 years, the sidewalls and bottom of steel ladles have been lined with carbon-bonded magnesia (MgO-C) and magnesia-alumina bricks (MAC). The alumina raw materials react with magnesia forming a spinel, which decreases open porosity and slag infiltration. The amount, grain size, and che...
Gespeichert in:
Veröffentlicht in: | Ceramics 2020-03, Vol.3 (1), p.12-21 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For more than 20 years, the sidewalls and bottom of steel ladles have been lined with carbon-bonded magnesia (MgO-C) and magnesia-alumina bricks (MAC). The alumina raw materials react with magnesia forming a spinel, which decreases open porosity and slag infiltration. The amount, grain size, and chemistry of the added spinel impact the properties of spinel-containing MgO-C. Corrosion tests have been performed in a steel casting simulator at 1580 °C using 18CrNiMo7-6 steel and Fe-rich slag as corrosion medium. Digital light microscopy and SEM/ EDS (scanning electron microscope with energy dispersive spectroscopy) were used to evaluate the corrosion mechanisms. The metal casting simulator test showed that the addition of CaO-MgO-Al2O3 aggregates results in the highest corrosion resistance against molten steel and synthetic basic slag compared to alumina-rich spinel aggregates. |
---|---|
ISSN: | 2571-6131 2571-6131 |
DOI: | 10.3390/ceramics3010002 |