Concurrent shape and build orientation optimization for FDM additive manufacturing using the principal stress lines (PSL)

Additive Manufacturing (AM) with the consisting constantly evolving technologies is a particularly popular research area. Based on the shape forming freedom, size, shape, and topology optimization techniques can be validated by AM produced parts. However, in every manufacturing process, AM also has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-04, Vol.9 (4), p.e15022-e15022, Article e15022
Hauptverfasser: Birosz, Márton Tamás, Safranyik, Ferenc, Andó, Mátyás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive Manufacturing (AM) with the consisting constantly evolving technologies is a particularly popular research area. Based on the shape forming freedom, size, shape, and topology optimization techniques can be validated by AM produced parts. However, in every manufacturing process, AM also has some adverse inherent properties. One and maybe the most significant optimization problem is the mechanical anisotropy caused by the layered structure. In this paper, a simultaneous build orientation and shape optimization method is presented. Both of the approaches are intended to increase the mechanical performance of the produced parts. Shape optimization was accomplished by varying the cross-section of the beam geometries, based on the angle between a PSL section and the characteristic load direction. To test the efficiency and validate the method 2D structures (with relatively small 3rd dimension) and their tensile properties were tested. Based on the results, we can prove that the PSL method works and help to increase the mechanical performance by 19.2% with only 7.8% size increment.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e15022