Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability

•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2024-07, Vol.295, p.120651, Article 120651
Hauptverfasser: Lu, Jiayu, Yan, Tianyi, Yang, Lan, Zhang, Xi, Li, Jiaxin, Li, Dandan, Xiang, Jie, Wang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subjects and numerous states.•Higher fingerprinting is useful for resulting in higher behavioral associations. The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2024.120651