Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion

The exact traveling wave solutions to coupled KdV equations with variable coefficients are obtained via the use of quadratic Jacobi’s elliptic function expansion. The presented coupled KdV equations have a more general form than those studied in the literature. Nine couples of quadratic Jacobi’s ell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-05, Vol.15 (5), p.1021
Hauptverfasser: Zeng, Xiaohua, Wu, Xiling, Liang, Changzhou, Yuan, Chiping, Cai, Jieping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exact traveling wave solutions to coupled KdV equations with variable coefficients are obtained via the use of quadratic Jacobi’s elliptic function expansion. The presented coupled KdV equations have a more general form than those studied in the literature. Nine couples of quadratic Jacobi’s elliptic function solutions are found. Each couple of traveling wave solutions is symmetric in mathematical form. In the limit cases m→1, these periodic solutions degenerate as the corresponding soliton solutions. After the simple parameter substitution, the trigonometric function solutions are also obtained.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15051021