A Mathematical Model to Control the Prevalence of a Directly and Indirectly Transmitted Disease
In this paper, a mathematical model to describe the spread of an infectious disease on a farm is developed. To analyze the evolution of the infection, the direct transmission from infected individuals and the indirect transmission from the bacteria accumulated in the enclosure are considered. A thre...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-10, Vol.9 (20), p.2562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a mathematical model to describe the spread of an infectious disease on a farm is developed. To analyze the evolution of the infection, the direct transmission from infected individuals and the indirect transmission from the bacteria accumulated in the enclosure are considered. A threshold value of population is obtained to assure the extinction of the disease. When this size of population is exceeded, two control procedures to apply at each time are proposed. For each of them, a maximum number of steps without control and reducing the prevalence of disease is obtained. In addition, a criterion to choose between both procedures is established. Finally, the results are numerically simulated for a hypothetical outbreak on a farm. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9202562 |