Design Principle and Loss Engineering for Photovoltaic–Electrolysis Cell System

The effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic–water electrolysis system. This allows key determinants of overall efficiency to be identified. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2017-03, Vol.2 (3), p.1009-1018
Hauptverfasser: Chang, Woo Je, Lee, Kyung-Hwan, Ha, Heonjin, Jin, Kyoungsuk, Kim, Gunho, Hwang, Sun-Tae, Lee, Heon-min, Ahn, Seh-Won, Yoon, Wonki, Seo, Hongmin, Hong, Jung Sug, Go, Yoo Kyung, Ha, Jung-Ik, Nam, Ki Tae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic–water electrolysis system. This allows key determinants of overall efficiency to be identified. On the basis of this model, 26.5% single-junction GaAs solar cell was combined with a membrane-electrode-assembled electrolysis cell (EC) using the dc/dc converting technology. As a result, we have achieved a solar-to-hydrogen conversion efficiency of 20.6% on a prototype scale and demonstrated light intensity tracking optimization to maintain high efficiency. We believe that this study will provide design principles for combining solar cells, ECs, and new catalysts and can be generalized to other solar conversion chemical devices while minimizing their power loss during the conversion of electrical energy into fuel.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.7b00012