Multiple discrete endogenous variables in weakly-separable triangular models

We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2016-03, Vol.4 (1), p.1-21
Hauptverfasser: Jun, Sung Jae, Pinkse, Joris, Xu, Haiqing, Yıldız, Neşe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
ISSN:2225-1146
2225-1146
DOI:10.3390/econometrics4010007