Cubic gauche polymeric nitrogen under ambient conditions
The long-sought cubic gauche phase of polymeric nitrogen (cg-PN) with nitrogen-nitrogen single bonds has been synthesized together with a related phase by a radio-frequency plasma reaction under near-ambient conditions. Here, we report the synthesis of polymeric nitrogen using a mixture of nitrogen...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-10, Vol.8 (1), p.930-6, Article 930 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The long-sought cubic gauche phase of polymeric nitrogen (cg-PN) with nitrogen-nitrogen single bonds has been synthesized together with a related phase by a radio-frequency plasma reaction under near-ambient conditions. Here, we report the synthesis of polymeric nitrogen using a mixture of nitrogen and argon flowing over bulk β-sodium azide or β-sodium azide dispersed on 100 nm long multiwall carbon nanotubes. The cg-PN phase is identified by Raman and attenuated total reflection-Fourier transform infrared spectroscopy, and powder X-ray diffraction. The synthesis of the cubic gauche allotrope of high energy density polymeric nitrogen under near-ambient conditions should therefore enable its optimized production and applications as a “green” energetic material and a potential catalyst for different chemical reactions.
Polymeric phases of nitrogen are promising as environmentally-friendly, high energy-density materials, but are inherently unstable. Here, the authors report the synthesis and stabilization of polymeric nitrogen in its cubic gauche phase under near-ambient conditions, via plasma-enhanced chemical vapour deposition. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-017-01083-5 |