Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts

Self-supervised learning (SSL) is a potential deep learning (DL) technique that uses massive volumes of unlabeled data to train neural networks. SSL techniques have evolved in response to the poor classification performance of conventional and even modern machine learning (ML) and DL models of enorm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-03, Vol.12 (5), p.758
Hauptverfasser: Abdulrazzaq, Mohammed Majid, Ramaha, Nehad T. A, Hameed, Alaa Ali, Salman, Mohammad, Yon, Dong Keon, Fitriyani, Norma Latif, Syafrudin, Muhammad, Lee, Seung Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-supervised learning (SSL) is a potential deep learning (DL) technique that uses massive volumes of unlabeled data to train neural networks. SSL techniques have evolved in response to the poor classification performance of conventional and even modern machine learning (ML) and DL models of enormous unlabeled data produced periodically in different disciplines. However, the literature does not fully address SSL’s practicalities and workabilities necessary for industrial engineering and medicine. Accordingly, this thorough review is administered to identify these prominent possibilities for prediction, focusing on industrial and medical fields. This extensive survey, with its pivotal outcomes, could support industrial engineers and medical personnel in efficiently predicting machinery faults and patients’ ailments without referring to traditional numerical models that require massive computational budgets, time, storage, and effort for data annotation. Additionally, the review’s numerous addressed ideas could encourage industry and healthcare actors to take SSL principles into an agile application to achieve precise maintenance prognostics and illness diagnosis with remarkable levels of accuracy and feasibility, simulating functional human thinking and cognition without compromising prediction efficacy.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12050758