Electrochemical Enantiomer Recognition Based on sp³-to-sp² Converted Regenerative Graphene/Diamond Electrode

It is of great significance to distinguish enantiomers due to their different, even completely opposite biological, physiological and pharmacological activities compared to those with different stereochemistry. A sp³-to-sp² converted highly stable and regenerative graphene/diamond electrode (G/D) wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-12, Vol.8 (12), p.1050
Hauptverfasser: Gao, Jingyao, Zhang, Haoyang, Ye, Chen, Yuan, Qilong, Chee, Kuan W A, Su, Weitao, Yu, Aimin, Yu, Jinhong, Lin, Cheng-Te, Dai, Dan, Fu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is of great significance to distinguish enantiomers due to their different, even completely opposite biological, physiological and pharmacological activities compared to those with different stereochemistry. A sp³-to-sp² converted highly stable and regenerative graphene/diamond electrode (G/D) was proposed as an enantiomer recognition platform after a simple β-cyclodextrin (β-CD) drop casting process. The proposed enantiomer recognition sensor has been successfully used for d and l-phenylalanine recognition. In addition, the G/D electrode can be simply regenerated by half-minute sonication due to the strong interfacial bonding between graphene and diamond. Therefore, the proposed G/D electrode showed significant potential as a reusable sensing platform for enantiomer recognition.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano8121050