On the First Three Extremum Values of Variable Sum Exdeg Index of Trees
For a graph G, its variable sum exdeg index is defined as SEIaG=∑xy∈EGadx+ady, where a is a real number other than 1 and dx is the degree of a vertex x. In this paper, we characterize all trees on n vertices with first three maximum and first three minimum values of the SEIa index. Also, we determin...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph G, its variable sum exdeg index is defined as SEIaG=∑xy∈EGadx+ady, where a is a real number other than 1 and dx is the degree of a vertex x. In this paper, we characterize all trees on n vertices with first three maximum and first three minimum values of the SEIa index. Also, we determine all the trees of order n with given diameter d and having first three largest values of the SEIa index. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/6491886 |