Functional competence of a partially engaged GPCR–β-arrestin complex

G Protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and drug targets. GPCR signalling and desensitization is critically regulated by β-arrestins (βarr). GPCR–βarr interaction is biphasic where the phosphorylated carboxyl terminus of GPCRs docks to the N-domain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-11, Vol.7 (1), p.13416-16, Article 13416
Hauptverfasser: Kumari, Punita, Srivastava, Ashish, Banerjee, Ramanuj, Ghosh, Eshan, Gupta, Pragya, Ranjan, Ravi, Chen, Xin, Gupta, Bhagyashri, Gupta, Charu, Jaiman, Deepika, Shukla, Arun K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G Protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and drug targets. GPCR signalling and desensitization is critically regulated by β-arrestins (βarr). GPCR–βarr interaction is biphasic where the phosphorylated carboxyl terminus of GPCRs docks to the N-domain of βarr first and then seven transmembrane core of the receptor engages with βarr. It is currently unknown whether fully engaged GPCR–βarr complex is essential for functional outcomes or partially engaged complex can also be functionally competent. Here we assemble partially and fully engaged complexes of a chimeric β 2 V 2 R with βarr1, and discover that the core interaction is dispensable for receptor endocytosis, ERK MAP kinase binding and activation. Furthermore, we observe that carvedilol, a βarr biased ligand, does not promote detectable engagement between βarr1 and the receptor core. These findings uncover a previously unknown aspect of GPCR-βarr interaction and provide novel insights into GPCR signalling and regulatory paradigms. β-arrestins initially contact with the phosphorylated carboxyl-terminus of GPCRs before engaging with the GPCR core. Here, the authors use a chimeric GPCR partially and fully engaged with β-arrestin1 and show that the core interaction is dispensable for receptor endocytosis and signalling.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13416