A Person Re-Identification Method Based on Multi-Branch Feature Fusion
Due to the lack of a specific design for scenarios such as scale change, illumination difference, and occlusion, current person re-identification methods are difficult to put into practice. A Multi-Branch Feature Fusion Network (MFFNet) is proposed, and Shallow Feature Extraction (SFF) and Multi-sca...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-11, Vol.13 (21), p.11707 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the lack of a specific design for scenarios such as scale change, illumination difference, and occlusion, current person re-identification methods are difficult to put into practice. A Multi-Branch Feature Fusion Network (MFFNet) is proposed, and Shallow Feature Extraction (SFF) and Multi-scale Feature Fusion (MFF) are utilized to obtain robust global feature representations while leveraging the Hybrid Attention Module (HAM) and Anti-erasure Federated Block Network (AFBN) to solve the problems of scale change, illumination difference and occlusion in scenes. Finally, multiple loss functions are used to efficiently converge the model parameters and enhance the information interaction between the branches. The experimental results show that our method achieves significant improvements over Market-1501, DukeMTMC-reID, and MSMT17. Especially on the MSMT17 dataset, which is close to real-world scenarios, MFFNet improves by 1.3 and 1.8% on Rank-1 and mAP, respectively. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app132111707 |